18,112 research outputs found

    Heavy flavour energy loss from AdS/CFT: A novel diffusion coefficient

    Full text link
    Two AdS/CFT based energy loss models are used to compute the suppression and azimuthal correlations of heavy quarks in heavy ion collisions. The model with a velocity independent diffusion coefficient is in good agreement with B and D meson data up to high pTp_T. The partonic azimuthal correlations we calculate exhibit an order of magnitude difference in low momentum correlations to pQCD calculations [arXiv:1305.3823]. We thus propose heavy flavour momentum correlations as a distinguishing observable of weakly- and strongly-coupled energy loss mechanisms.Comment: 4 pages, 2 figures. Proceedings for Strangeness in Quark Matter 2017. arXiv admin note: text overlap with arXiv:1703.0584

    A proof of the S-genus identities for ternary quadratic forms

    Full text link
    In this paper we prove the main conjectures of Berkovich and Jagy about weighted averages of representation numbers over an S-genus of ternary lattices (defined below) for any odd squarefree S \in N. We do this by reformulating them in terms of local quantities using the Siegel-Weil and Conway-Sloane formulas, and then proving the necessary local identities. We conclude by conjecturing generalized formulas valid over certain totally real number fields as a direction for future work.Comment: 14 page

    Discounting of reward sequences: a test of competing formal models of hyperbolic discounting

    Get PDF
    Humans are known to discount future rewards hyperbolically in time. Nevertheless, a formal recursive model of hyperbolic discounting has been elusive until recently, with the introduction of the hyperbolically discounted temporal difference (HDTD) model. Prior to that, models of learning (especially reinforcement learning) have relied on exponential discounting, which generally provides poorer fits to behavioral data. Recently, it has been shown that hyperbolic discounting can also be approximated by a summed distribution of exponentially discounted values, instantiated in the μAgents model. The HDTD model and the μAgents model differ in one key respect, namely how they treat sequences of rewards. The μAgents model is a particular implementation of a Parallel discounting model, which values sequences based on the summed value of the individual rewards whereas the HDTD model contains a non-linear interaction. To discriminate among these models, we observed how subjects discounted a sequence of three rewards, and then we tested how well each candidate model fit the subject data. The results show that the Parallel model generally provides a better fit to the human data

    Fluidization of collisionless plasma turbulence

    Full text link
    In a collisionless, magnetized plasma, particles may stream freely along magnetic-field lines, leading to phase "mixing" of their distribution function and consequently to smoothing out of any "compressive" fluctuations (of density, pressure, etc.,). This rapid mixing underlies Landau damping of these fluctuations in a quiescent plasma-one of the most fundamental physical phenomena that make plasma different from a conventional fluid. Nevertheless, broad power-law spectra of compressive fluctuations are observed in turbulent astrophysical plasmas (most vividly, in the solar wind) under conditions conducive to strong Landau damping. Elsewhere in nature, such spectra are normally associated with fluid turbulence, where energy cannot be dissipated in the inertial scale range and is therefore cascaded from large scales to small. By direct numerical simulations and theoretical arguments, it is shown here that turbulence of compressive fluctuations in collisionless plasmas strongly resembles one in a collisional fluid and does have broad power-law spectra. This "fluidization" of collisionless plasmas occurs because phase mixing is strongly suppressed on average by "stochastic echoes", arising due to nonlinear advection of the particle distribution by turbulent motions. Besides resolving the long-standing puzzle of observed compressive fluctuations in the solar wind, our results suggest a conceptual shift for understanding kinetic plasma turbulence generally: rather than being a system where Landau damping plays the role of dissipation, a collisionless plasma is effectively dissipationless except at very small scales. The universality of "fluid" turbulence physics is thus reaffirmed even for a kinetic, collisionless system
    corecore